Resumão - Revisão de Matérias

Revisando seus conhecimentos


  Matemática
 

Teoria das Funções

 

Definição

Dados dois conjuntos A e B não vazios , chama-se função (ou aplicação) de A em B, representada por
f : A ® B ; y = f(x)
, a qualquer relação binária que associa a cada elemento de A , um único elemento de B.
.

Portanto , para que uma relação de A em B seja uma função , exige-se que a cada x Î A esteja associado um único y Î B , podendo entretanto existir y Î B que não esteja associado a nenhum elemento pertencente ao conjunto A.

Obs : na notação y = f(x) , entendemos que y é imagem de x pela função f, ou seja:
y está associado a x através da função f.

Exemplo:

f(x) = 4x+3 ; então f(2) = 4.2 + 3 = 11 e portanto , 11 é imagem de 2 pela função f ;
f(5) = 4.5 + 3 = 23 , portanto 23 é imagem de 5 pela função f , f(0) = 4.0 + 3 = 3, etc.

Para definir uma função , necessitamos de dois conjuntos (Domínio e Contradomínio ) e de uma fórmula ou uma lei que relacione cada elemento do domínio a um e somente um elemento do contradomínio .

Quando D(f) Ì R e CD(f) Ì R , sendo R o conjunto dos números reais , dizemos que a função f é uma função real de variável real . Na prática , costumamos considerar uma função real de variável real como sendo apenas a lei y = f(x) que a define , sendo o conjunto dos valores possíveis para x , chamado de domínio e o conjunto dos valores possíveis para y , chamado de conjunto imagem da função . Assim , por exemplo , para a função definida por y = 1/x , temos que o seu domínio é D(f) = R* , ou seja o conjunto dos reais diferentes de zero (lembre-se que não existe divisão por zero) , e o seu conjunto imagem é também R* , já que se y = 1/x , então x = 1/y e portanto y também não pode ser zero .

Dada uma função f : A ® B definida por y = f(x) , podemos representar os pares ordenados (x , y) Î f onde x Î A e y Î B ,num sistema de coordenadas cartesianas .
O gráfico obtido será o gráfico da função f .

Assim , por exemplo , sendo dado o gráfico cartesiano de uma função f , podemos dizer que:

a ) a projeção da curva sobre o eixo dos x , nos dá o domínio da função .

b ) a projeção da curva sobre o eixo dos y , nos dá o conjunto imagem da função .

c ) toda reta vertical que passa por um ponto do domínio da função , intercepta o gráfico da função em no máximo um ponto .

Veja a figura abaixo:

Tipos de funções

Função sobrejetora

É aquela cujo conjunto imagem é igual ao contradomínio .
Exemplo:

Função injetora

Uma função y = f(x) é injetora quando elementos distintos do seu domínio , possuem imagens distintas,
isto é:
x1 ¹ x2 Þ f(x1) ¹ f(x2) ¹ x2 Þ f(x1) ¹ f(x2) ¹ x2 Þ f(x1) ¹ f(x2) ¹ x2 Þ f(x1) ¹ f(x2) ¹ x2 Þ f(x1) ¹ f(x2) ¹ x2 Þ f(x1) ¹ f(x2) ¹ x2 Þ f(x1) ¹ f(x2) .

Exemplo:

Função bijetora

Uma função é dita bijetora , quando é ao mesmo tempo , injetora e sobrejetora .

Exemplo:

Exercícios resolvidos:

1 - Considere três funções f, g e h, tais que:
A função f atribui a cada pessoa do mundo, a sua idade.
A função g atribui a cada país, a sua capital
A função h atribui a cada número natural, o seu dobro.

Podemos afirmar que, das funções dadas, são injetoras:
a) f, g e h
b) f e h
c) g e h
d) apenas h
e) nenhuma delas

Solução:

Sabemos que numa função injetora, elementos distintos do domínio, possuem imagens distintas, ou seja:
x1 ¹ x2 Þ f(x1) ¹ f(x2) .

Logo, podemos concluir que:

f não é injetora, pois duas pessoas distintas podem ter a mesma idade.
g é injetora, pois não existem dois países distintos com a mesma capital.
h é injetora, pois dois números naturais distintos, possuem os seus dobros também distintos.
Assim é que concluímos que a alternativa correta é a de letra C.

2 - Seja f uma função definida em R - conjunto dos números reais - tal que
f(x - 5) = 4x. Nestas condições, pede-se determinar f(x + 5).

Solução:

Vamos fazer uma mudança de variável em f(x - 5) = 4x, da seguinte forma:
x - 5 = u \ x = u + 5

Substituindo agora (x - 5) pela nova variável u e x por (u + 5), vem:
f(u) = 4(u + 5) \ f(u) = 4u + 20

Ora, se f(u) = 4u + 20, teremos:
f(x + 5) = 4(x+5) + 20 \ f(x+5) = 4x + 40

Agora resolva este:

A função f em R é tal que f(2x) = 3x + 1. Determine 2.f(3x + 1).
Resp: 9x + 5

3 - Paridade das funções

3.1 - Função par

A função y = f(x) é par, quando " x Î D(f) , f(- x ) = f(x) , ou seja, para todo elemento do seu domínio,
f( x ) = f ( - x ). Portanto , numa função par, elementos simétricos possuem a mesma imagem. Uma conseqüência desse fato é que os gráficos cartesiano das funções pares, são curvas simétricas em relação ao eixo dos y ou eixo das ordenadas.

Exemplo:

y = x4 + 1 é uma função par, pois f(x) = f(-x), para todo x. Por exemplo,
f(2) = 24 + 1 = 17 e f(- 2) = (-2)4 + 1 = 17

O gráfico abaixo, é de uma função par.

Função ímpar

A função y = f(x) é ímpar , quando " x Î D(f) , f( - x ) = - f (x) , ou seja, para todo elemento do seu domínio, f( - x) = - f( x ). Portanto, numa função ímpar, elementos simétricos possuem imagens simétricas. Uma conseqüência desse fato é que os gráficos cartesianos das funções ímpares, são curvas simétricas em relação ao ponto (0,0), origem do sistema de eixos cartesianos.

Exemplo:

y = x3 é uma função ímpar pois para todo x, teremos f(- x) = - f(x).
Por exemplo, f( - 2) = (- 2)3 = - 8 e - f( x) = - ( 23 ) = - 8.

O gráfico abaixo é de uma função ímpar:

Nota: se uma função y = f(x) não é par nem ímpar, dizemos que ela não possui paridade.

Exemplo:

O gráfico abaixo, representa uma função que não possui paridade, pois a curva não é simétrica em relação ao eixo dos x e, não é simétrica em relação à origem.

1 - FUNÇÃO INVERSA

Dada uma função f : A ® B , se f é bijetora , então define-se a função inversa f -1 como sendo a função de B em A , tal que f -1 (y) = x .

Veja a representação a seguir:

É óbvio então que:
a) para obter a função inversa , basta permutar as variáveis x e y .
b) o domínio de f -1 é igual ao conjunto imagem de f .
c) o conjunto imagem de f -1 é igual ao domínio de f .
d) os gráficos de f e de f -1 são curvas simétricas em relação à reta y = x ou seja , à bissetriz do primeiro quadrante .

Exemplo:
Determine a INVERSA da função definida por y = 2x + 3.
Permutando as variáveis x e y, fica: x = 2y + 3
Explicitando y em função de x, vem:
2y = x - 3 \ y = (x - 3) / 2, que define a função inversa da função dada.

O gráfico abaixo, representa uma função e a sua inversa.

Observe que as curvas representativas de f e de f-1, são simétricas em relação à reta
y = x, bissetriz do primeiro e terceiro quadrantes.

Exercício resolvido:
A função f: R ® R , definida por f(x) = x2 :
a) é inversível e sua inversa é f -1 (x) = Ö x
b) é inversível e sua inversa é f -1(x) = - Ö x
c) não é inversível
d) é injetora
e) é bijetora

SOLUÇÃO:
Já sabemos que somente as funções bijetoras são inversíveis, ou seja, admitem função inversa. Ora, a função f(x) = x2, definida em R - conjunto dos números reais - não é injetora, pois elementos distintos possuem a mesma imagem. Por exemplo,
f(3) = f(-3) = 9. Somente por este motivo, a função não é bijetora e, em conseqüência, não é inversível.

Observe também que a função dada não é sobrejetora, pois o conjunto imagem da função f(x) = x2 é o conjunto R + dos números reais não negativos, o qual não coincide com o contradomínio dado que é
igual a R. A alternativa correta é a letra C.

2 - FUNÇÃO COMPOSTA

Chama-se função composta ( ou função de função ) à função obtida substituindo-se a variável independente x , por uma função.

Simbologia : fog (x) = f(g(x)) ou gof (x) = g(f(x)) .

Veja o esquema a seguir:

Obs : atente para o fato de que fog ¹ gof , ou seja, a operação " composição de funções " não é comutativa .

Exemplo:
Dadas as funções f(x) = 2x + 3 e g(x) = 5x, pede-se determinar gof(x) e fog(x).
Teremos:
gof(x) = g[f(x)] = g(2x + 3) = 5(2x + 3) = 10x + 15
fog(x) = f[g(x)] = f(5x) = 2(5x) + 3 = 10x + 3
Observe que fog ¹ gof .

Exercícios resolvidos:

1 - Sendo f e g duas funções tais que: f(x) = ax + b e g(x) = cx + d . Podemos afirmar que a igualdade gof(x) = fog(x) ocorrerá se e somente se:
a) b(1 - c) = d(1 - a)
b) a(1 - b) = d(1 - c)
c) ab = cd
d) ad = bc
e) a = bc

SOLUÇÃO:
Teremos:
fog(x) = f[g(x)] = f(cx + d) = a(cx + d) + b \ fog(x) = acx + ad + b
gof(x) = g[f(x)] = g(ax + b) = c(ax + b) + d \ gof(x) = cax + cb + d

Como o problema exige que gof = fog, fica:
acx + ad + b = cax + cb + d

Simplificando, vem:
ad + b = cb + d
ad - d = cb - b \ d(a - 1) = b(c - 1), que é equivalente a d(a - 1) = b(c - 1), o que nos leva a concluir que a alternativa correta é a letra A. .

2 - Sendo f e g duas funções tais que fog(x) = 2x + 1 e g(x) = 2 - x então f(x) é:
a) 2 - 2x
b) 3 - 3x
c) 2x - 5
*d) 5 - 2x
e) uma função par.

SOLUÇÃO:
Sendo fog(x) = 2x + 1, temos: f[g(x)] = 2x + 1
Substituindo g(x) pelo seu valor, fica: f(2 - x) = 2x + 1
Fazendo uma mudança de variável, podemos escrever 2 - x = u, sendo u a nova variável. Portanto, x = 2 - u.

Substituindo, fica:
f(u) = 2(2 - u) + 1 \ f(u) = 5 - 2u
Portanto, f(x) = 5 - 2x , o que nos leva à alternativa D.

Agora resolva esta:

Dadas as funções f(x) = 4x + 5 e g(x) = 2x - 5k, ocorrerá gof(x) = fog(x) se e somente se k for igual a:
*a) -1/3
b) 1/3
c) 0
d) 1
e) -1

Tipos particulares de funções

FUNÇÃO CONSTANTE

Uma função é dita constante quando é do tipo f(x) = k , onde k não depende de x .
Exemplos:
a) f(x) = 5
b) f(x) = -3

Obs : o gráfico de uma função constante é uma reta paralela ao eixo dos x .

Veja o gráfico a seguir:

FUNÇÃO DO 1º GRAU

Uma função é dita do 1º grau , quando é do tipo y = ax + b , onde a ¹ 0 .
Exemplos :
f(x) = 3x + 12 ( a = 3 ; b = 12 )
f(x) = -3x + 1 (a = -3; b = 1).

Propriedades da função do 1º grau :

1) o gráfico de uma função do 1º grau é sempre uma reta

2) na função f(x) = ax + b , se b = 0 , f é dita função linear e se b ¹ 0 f é dita função afim .
3) o gráfico intercepta o eixo dos x na raiz da equação f(x) = 0 e, portanto, no ponto de abcissa x = - b/a .
4) o gráfico intercepta o eixo dos y no ponto (0 , b) , onde b é chamado coeficiente linear .
5) o valor a é chamado coeficiente angular e dá a inclinação da reta .
6) se a
> 0 , então f é crescente .
7) se a
< 0 , então f é decrescente .
8) quando a função é linear, ou seja, y = f(x) = ax , o gráfico é uma reta que sempre passa na origem.

Exercício resolvido:

1 - Determine a função f(x) = ax + b, sabendo-se que f(2) = 5 e f(3) = -10.

SOLUÇÃO:
Podemos escrever:
5 = 2.a + b
-10 = 3.a + b

Subtraindo membro a membro, vem:
5 - (- 10) = 2.a + b - (3.a + b)
15 = - a
\ a = - 15

Substituindo o valor de a na primeira equação (poderia ser na segunda), fica:
5 = 2.(- 15) + b
\ b = 35.
Logo, a função procurada é: y = - 15x + 35.

Agora resolva esta:
A função f é definida por f(x) = ax + b. Sabe-se que f(-1) = 3 e f(3) = 1, então podemos afirmar que f(1) é
igual a:
*a) 2
b) -2
c) 0
d) 3
e) -3

FUNÇÃO DO 2º GRAU

Uma função é dita do 2º grau quando é do tipo f(x) = ax2 + bx + c , com a ¹ 0 .
Exemplos: f(x) = x2 - 2x + 1 ( a = 1 , b = -2 , c = 1 ) ;
y = - x2 ( a = -1 , b = 0 , c = 0 )

Gráfico da função do 2º grau y = ax2 + bx + c :
é sempre uma parábola de eixo vertical .

Propriedades do gráfico de y = ax2 + bx + c :

1) se a > 0 a parábola tem um ponto de mínimo .
2) se a
< 0 a parábola tem um ponto de máximo
3) o vértice da parábola é o ponto V(xv , yv) onde:
xv = - b/2a
yv = -
D /4a , onde D = b2 - 4ac
4) a parábola intercepta o eixo dos x nos pontos de abcissas x' e x'' , que são as raízes da
equação ax2 + bx + c = 0 .
5) a parábola intercepta o eixo dos y no ponto (0 , c) .
6) o eixo de simetria da parábola é uma reta vertical de equação x = - b/2a.
7) ymax = -
D / 4a ( a < 0 )
8) ymin = -
D /4a ( a > 0 )
9) Im(f) = { y
Î R ; y ³ - D /4a } ( a > 0 )
10) Im(f) = { y
Î R ; y £ - D /4a} ( a < 0)
11) Forma fatorada : sendo x1 e x2 as raízes da de f(x) = ax2 + bx + c , então ela pode ser escrita na forma fatorada a seguir :
y = a(x - x1).(x - x2)

 

 

 Voltar Menu Matemática           Fórmulas de matemática (I)

 

  Teste seus conhecimentos nos Simulados de nosso portal !

Confira como optar  pela carreira Divulgue nosso portal para um amigo

Veja também links de carreiras

Veja as tendências de carreiras 

 Brasil,
Copyright © Desde 08/2000 Vestibular1. Todos os direitos reservados. All rights reserved.